

Hangzhou Shalom Electro-optics Technology Co., Ltd. Sapphire (Al2O3) Crystals Windows

Features:

- Extreme Surface Hardness Chemical Resistance
- Transmits Wavelengths Ranging From UV to Mid-Infrared (0.2µm to 5.5µm)
- Thinner and Stronger than Standard Glass Windows

Descriptions:

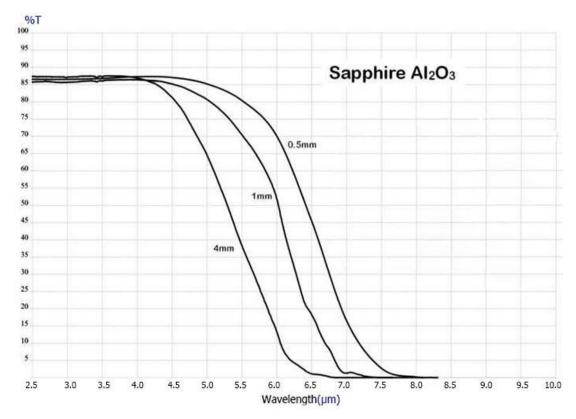
Sapphire or aluminum oxide (Al2O3) is single crystal and is useful in a transmission range from 0.2 - 5.5μ m, sapphire is suitable for MWIR 3- 5μ m thermal imaging applications. Sapphire Windows are made from single crystal sapphire, they are ideal for demanding applications for their extreme surface hardness, high thermal conductivity, high dielectric constant and resistance to common chemical acids and alkalis. Sapphire is the second hardest crystal next to diamonds and, because of their structural strength, sapphire windows can be made much thinner than other common dielectric windows with improved transmittance.

Specifications:

Materials	Sapphire crystals	Diameter Range	~ 250mm
Aperture	>90%	Dimension Tolerance	+0.0/-0.2mm
Thickness Tolerance	+/-0.1mm	Surface Quality	60/40 S/D
Parallelism	1 arc minute	Chamfer	0.3-0.5mmx45degree
Coating	No coating or		
	single layer MgF2		

Basic Properties:

Transmission Range	0.17 to 5.5 μm	Refractive Index	No 1.75449; Ne 1.74663 at 1.06 µm (1)
Reflection Loss	14% at 1.06 µm	Absorption Coefficient	0.3 x 10 ⁻³ cm-1 at 2.4 μm
			(2)
Reststrahlen Peak	13.5 µm	dn/dT	13.1 x 10⁻ ⁶ at 0.546 µm
			(3)
$dn/d\mu = 0$	1.5 μm	Density	3.97 g/cc
Melting Point	2040°C	Thermal Conductivity	27.21 W m-1 K-1 at 300K
Hardness	Knoop 2000 with	Specific Heat Capacity	763 J Kg-1 K-1 at 293K
	2000g indenter		(4)
Dielectric Constant	11.5 (para) 9.4 (perp)	Youngs Modulus (E)	335 GPa
	at 1MHz		



Hangzhou Shalom Electro-optics Technology Co., Ltd.

Shear Modulus (G)	148.1 GPa	Bulk Modulus (K)	240 GPa
	C11=496 C12=164 C	Apparant Elactic Limit	
Elastic Coefficients	13=115 C33=498 C44	Apparent Elastic Limit	300 MPa (45,000 psi)
	=148		
Poisson Ratio	0.25	Solubility	98 x 10 ⁻⁶ g/100g water
Molecular Weight	101.96	Class/Structure	Trigonal (hex), R3c

Technical images:

Transmission curve of the Sapphire windows (no coating)

Related products:

- 1) Infrared windows -> Ge windows
- 2) Infrared lenses -> Sapphire lenses
- 3) Infrared domes -> Sapphire domes